2 3 RACHL S

(e

X7
;4 LERSY

AD-753 120

FEABL (FINITE ELEMENT ANALYSIS BASIC
LIBRARY) USER!S GUIDE

Oscar Orringer, et al

Massachusetts Institute of Technology

Prepared for:

Air Force Office of Scientific Research

August 1972

DISTRIBUTED BY:

Nationai Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151




A'gos;f; ' m a
(FINITE ELEMENT ANALYSIS ‘
BASIC LIERARY)
USER’S GUIDE

Oscar Orrmger ': i
Susan E French

@
| O
R
-)

AEROELASTIC ARfD STRUCTURES RESEARCH LABORATORY
'DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS - -+
'MASSACHUSETTS INSTETUTE OF TECHNOLOGY - -~
. (“AMBRIDGE MASSACHUSETTS 02139 i
R ..A'U'.GUST. 41972‘:

Pnpale(i fOc -

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
S UNITED STATES AIR FORCE s

Under .?
’ CONTRACT NO F44620 70 (, 0020

Am)ooyed ‘ol pul)llc mledsc
dlstnl)unon unhmned R

ATiON SFRVICE




ACCESSIO for .
- v— w7 .
fins e tecty B

poy B b v 3
Uodovse 4583
Jahicaed L P

.......................................................

B NOTICES
ST AVRILAEILITY Gopes

bog T AAL 8,600 ST

Qualified requestors may obtain additional
copies from the Defense Documentation Center,
all others should apply to the National
Technical Information Service,

Reproduction, translation, publication, use,
and disposal in whole or in part by or for
the United States Government 1s permitted.

g
1
a
§
]
;
2
I
5
;
%
i
§
4
:
;
k
:

AR it n eaidt P P

g
NEund ne G wmme AN K e M derm e MR o




e o s OB T g e R i TR W T

- ..

~  UNCLASSIFITD o

.

- ° L : :: FEERC )
Security Classification 2 :

DOCUMENT CONTROL DATA-R&D

(Security classitication of title, body of abstrsct and indexing annolation must be entered when the overall regert 12 classllied)
1. ORIGINATING ACTIVITY (Corporste author) 28, REPORY SECURITY CLASSIFICATION
MASSACHUSETTS INSTITUTE OF TECHNOLOGY UNCLASSIFIED
AEROELASTIC & STRUCTURES RESEARCH LABORATCRY 2b, GROUP
CAMBRTDGE, MASSACHUSETTS 02139
3. REPGRY TITLE

FEABL (FINITE ELEMENT ANALYSIS BASIC LIBRARY) USEK'S GUIDE

4. DESCRIPTIVE NOTES (Type of report and inclusivs dates)
Scientific Interim

s. AUTHORIS) (First name, midcie initial, last name)

OSCAR ORRINGER SUSAN E FRENCH

8. REPORT DATE

748, TOTAL NO. OF PAGES 75 NO. OF REFS
Aug 1972 105 5
8a. CONTRACT OR GRANT NO. 92. ORIGINATOR'S REPORT NUMDBER!S)
F44620-70-C-0020 ASRL-TR-~162-3
b, PROJECT NO.
9782-02
<. 61102F [1-8 ‘oh;r:(:;oz)spon'r NO(S) (A::;orher numbers that may bo assigned,
‘. 681307 AFOSR=NC~T¥ =¥Y¥>
10, OISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

11. SUPPLEMENTARY NOTES

[32. SPONSORING MILITARY ACTIVITY
TECH, OTHER AF Office of Scientific Research (NAM)
1400 Wilson Blvd.

Arlington, Va. 22209

13. ABSTRACT

This guide contains complete instructions for the use of FEABL, a basic software
system developed for finite element analysis at the MIT Aeroelastic and Structures
Research Laboratory. FEABL has been designed primarily for (but is not limited to)
the specialized type of continuum analysis problem encountered in the materials
laboratory. FEABL has also been used successfully as an educational tool in the
finite element analysis course given by the MIT Department of Aeronautics and
Astronautics. The software is modular, and is written in machine-independent
FORTRAN IV. A complete program listing is cort ained in Appendix C. Element

subroutines which can be used either independently or in conjunction with FEABL will
be presented in future publications.

LY

vt

a e A A S e e gt
it

T

DD  &5V.1473 Tk

UNCLASSIFIED

. e PRI
&kﬂf 1 S AT s £k RS TEAR DT Ll AP AR



S pbn i

LN

Qe

£

RV

RS

T,

s

ceRktaa i

s

a

B
e

R O T

s m s e e —

. UNCLASSIFIED

Security Classification

(,
1a.
KEY WOROS

LINK A

LINK B

LINK €

wT

ROLE wY

ROLE wT

FINITE ELEMENT ANALYSIS
STRUCTURAL ANALYSIS
NUMERICAL METHODS
FINITE ELEMENT SOFIWARE

MATRIX METHODS

ROLE |

It

UNCLASSIFIED

Security Classification

P,

S VA

.



AFOSR TR
ASRL TR 162-3

FEABL
(FINITE ELEMENT ANALYSIS BASIC LIBRARY)
USER'S GUIDE

Oscar Orringer
Susan E. French

August 1972 D E:) C
D ‘E@?”'E”% -
PEC 21 1972
GEUT LS
Prepared for T B

Aeromechanics Division
Alr Force Office of Sclentific Research
Arlington, Virginia 22209
Under
CONTRACT NO. F44620-70-C-0020.

Approved for public release; distribution unlimited.

Aeroelastic and Structures Research Laboratory
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

LK e Y S TR AT R KN




a FFae

FOREWORD

‘The developments documented in this report were carried out
at the Aeroelastic and Structures Resea.ch Laboratcry, Department
of Aeronautics and Astronautics, Massachusetts Institute of
Technology, Cambridge, Massachusetts under Contract lo. F44620-70-
C~-0020 from the Office of Scientific Research, U.S. Air Force.

The software system originated in connection with Dr. Orringer's
need to use finite-element analysis for problems in the comnressive
behavior of fiber composites that were bein;; investipgated under the
Contract. Dr., Jacob Pome.antz of the Aeromechanics Division, AFOSR
served as technical monitor.

The authors wish to express their appreciation to Prof. Pin
Tong of the Department of Aeronautics and Astronautics for the
numerous helpful suggestions he made regarding the design of the
FEABL software system. The authors are also indebted to all of the
students in the Departments 1971-72 finite element analysis course
who, under Prof. Tong's guidance, acted as guinea pipgs while the
software was still being tested. For his review of this report and
for attendant constructive suggestions, the authors are indebted to
Professor Emmett A. Witmer of the MIT-ASRL.

The computations and testing of the program were carried out
at the MIT Information Processing Center,
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ABSTRACT

This guide contains complete instructions for the use of
FEABL, a basic software system developed for finite element
analysis at the MIT Aeroelastic and Structures Research
Laboratory, FEABL has been designed primarily for (but is
not limited to) the specialized type of continuum analysis
problem encountered in the materials laboratory. FEABL has
also been used successfully as an educational tool in the
finite element analysis course given by the MIT Department of
Aeronautics and Astronautics., The software is modular, and is
written in machine-independent FZRTRAN IV. A complete program
listing is contained in Appendix C. Element subroutines which
can be used either independently or in conjunction with FEABL
will be presented in future publications.
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SECTION 1

INTRODUCTION

1.1 Purpose and Scope

Finite element analysis programs developed in the past
fall into two general categories: the "one-shot" program
optimized for sulution of a particular problem, or the "systems"
program designed for the non-cptimum solution of any problern.
The structural engineer who has a new analysis to perform must
i spend a great amount of time either writing his own "one-shet" pro-

) gram or learning how to use one of the general "systems". FEABI
attempts to relieve the analyst of these burdens by providing
a basic library which handles the numerical operations common

to all finite element analysis, and which can be understood
and used after a few hours of study. FEABL's current capa-~
bilities are limited to static analysis. Other options will
be added in the future, as the need arises, and according

to their usefulness., This gulde 1is written for the analyst
who has some acquaintance with the thecry cf finite element
analysis and with IBM F@RTRAN IV.

THE FEABL software system has been designed primarily for
"materials laboratery" stress analysis. The analysis problems
encountered in this application area are characterized by geometry
which, although not simple, is mathematically describable, and
by stress solution accuracy requirements which can usually be met :
with models of 1,000 or fewer degrees of freedom. Stress concen-
tration analysis for two-material systems and for composite~to-
metal step-lap Joints are two examples of the materials laboratory
i type of'problem. Another feature of many of these problems is a
requirement for nonstandard solution methods. For instance,
the bournidary conditions may include an undetermined prescribed
displacement, the value of which depends upon satisfaction of an

SOy
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auxiliary conditicn on a boundary stress integral; a specific
example is given in Ref. 1., The main features of FEABL, all-
in-core computation and control of the solution process by
the user, are well adapted to the needs of such problems.

Experience in the MIT Department of Aeronautics and
Astronautics has also shown that FEABL is a valuable educaticnal
tool. A budget of $50 to $70 per man on an IBH 370/155 machine
allows each student to solve one or two problems, each having
200 to 300 degrees of freedom., In the approachn taken at MIT,
the student is required to program his structure geometry, element
interconnections, and subroutines for generating stiffnesses and
stresses, He must also achieve a general understanding of the
principles upon which the FEABL subroutines are based. Thus, each
student is able to gain some practical experience, as well as
theoretical knowledge in one semester of a finite element analysis
course, This approach 1s felt to be superior to the traditional
method of having the student learn only how to code the input data
for a particular, complete "systems" program.

The flexibility and economy of the FEABL software system
has been amply demonstrated by various applications in which real
problems were solved during the test/exercise development phase.
The following are examnles abstracted from these applications:
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Problem
Description

Total
DOF

CPU Total
Time (Min) Cost ($)

Displacement analysis

of two large rigid frame
structures (6 load

cases each)

216
426

0,42 5.37
2.49 13.17

Continuum stress
concentration analysis
with boundary condition
determined by auxiliary
stress integral (3
complete solutions
required for each case)

338

hy2

1.50 b.50

2.70 12.00

Stress analysis of

a large frame in an
oil tanker, using
rectangle and triangle
continuum elements

and flange elements

(6 loading cases)

3.0 14,00
(Approx.)

Pressure distribution
analysis for viscous flow
around a corpuscle

in a blood vessel

160

No data available

Stress analysis,
including solution
for stress intensity
factor of a sharp
crack, using hybrid

‘element at the crack

160

0.13 2.54
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The above examples were run on the IBM 370/155 at the MIT Infor-
mation Processing Center. The costs presented are for production
runs, exclusive of debugging.
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1,2 General System Concepts

"Development of the FEABL software has been based on three

general concepts., First, FYRTRAN IV was selected as the program

language, and all F@RTRAN syntax rules were followed rigorously.
This makes FEABL as machine-independent as possible, to allow

for use at installations having other than IBM equipment. The
only restrictions are that the F@RTRAN compiler software must
permit logical IF statements, variable dimensioning, six-character

variable names, and labelled C@MM@N declarations.

Second, the
software is modular in character,

The finite element analysis
process has been decomposed into a series of distinct steps,
and each step which is independent of structure geometry has been

programmed as a separate subroutine, FEABL 1s thus analogous,

in a sense, to the IBM Scientific Subroutine Package.

The third concept deals with data storage techniques. In '

order to minimize wasted storage space, a vector approach has

been adopted. All of the input data for a problem, certain

"housekeeping" data, and internally generated problem data such
as the master stiffness matrix are stored in a single vector,

referred to below as the /DATA/ vector. In addition, control

parameters which locate entries in the /DATA/ vector or manage
input-output operations are organized in four C@PMM@N groups.

1.3 General System Organization

The analyst must provide one or more programs which inter-
face with the FEABL software:

1. A HMAIN program which inputs the required problem data

and controls the execution of all subrograms.
One or more subroutines which generate an element
stiffness matrix (and, if required, equivalent nodal

forces for thermal stress, gravity, etc.) for each
type of element.?

2.

-
Subroutines from ASRL EGL (Element Generator Library) may be
used. y
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3. One or more subroutines which generate eliement stresses
from the element's nodal displacements.*

Data may be input by reading cards, disk or tape files, by auto-
matic generation techniques, or by a combination of the two
methods. The details of a particular problem will determine
whiech approach is more efficient. For very simple types of prob-
lems, in which the structure is divided into only a few different
element types and shapes, stiffness matrix and stress generation
may be done within the MAIN program. However, if separate sub-
routines are required for these tasks, pre-existing ones may be
interfaced with FEABL, since the FEABL software package has been
written in a manner such that pre-existing F@RTRAN subroutines
may be adapted to run with FEABL with 1little or no re-programming.

The interface between user-written programs and FEABL
consists of two parts: data location and process control.
Figure 1 illustrates the general features of the data location
interface. ‘The labelled C@MM@N areas mentioned in the previous
section must appear in the user's MAIN program., This is accom-
plished simply by including identical sets of DIMENSI@N, C@MM@N
and EQUIVALENCE declarations in MAIN and in the FEABL software.
There 1s no requirement for the element generator subroutines
to communicate with FEABL in this manner; these subroutines need
only be interfaced with user's MAIN by an identical DIMENSI@N
declaration for the element stiffness matrix and "force/displace-
ment" vector., The latter is a dual-purpose vector in which
element equivalent nodal forces are generated, and which serves
later as a storage area for the solution displacement vector of
the element. The interface between the generator routines and
FEABL is achieved automatically by wvariable DIMENSI@N declarations
contained in the FEAEL software, The data location interface is
discussed in detail in Section 2.

*Subroutines from ASRL EGL (Element Generator Library) may be
used.,

«
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User | for element stiffness \ | Element
A Generator

| MAIN [€ \ matrix and force-
displacement vecb Subroutines

stiffness matrix
jand force- Jis.place ment
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DIMENSION an {n
 FEABL) g

/ Labelled COMMEN Areas™
® /DATA/ Vector

® Control Parameters

|FEABL Software

FIGURE 1

The process control interface is simply a recognition
that input of problem data and operations on the data must be
performed in a certain sequence. This requires a definite series
of programming steps in user's MAIN program. Section 3 discusses
the process control interface in detail.
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SECTION 2

THE FEABL DATA STORAGE SYSTEM

2,1 Accessory Data

The accessory data is divided intc four control parameter
CoMM@H groups. The COMMON declaration statements listed below
for the four control parameter groups must appear in all user-
written MAIN programs.

2.1.1 Input-Output Control Parameters

CgMM@N /I@/ KR, KW, KP, KT1l, KT2, KT3

The six parameters in the /I@/ group are hardware device
codes, defined as follows:

KR - card reader

KW - printer

KP = card punch
KT1, KT2, KT3 are extra device codes which the user may define
optionally as he pleases, For example, KTl might refer to a
system direct access disk, KT2 to an external tape unit, etc.
Only the printer device code KW 1s used directly by the FEABL
software presented in this guide. The input-output control
parameters are used in FPRTRAN READ and WRITE statements, e.g.:

READ (KR,1) NET, NDT
1 F@RMAT (216)
WRITE (KW,2) NET, NDT
2 F@RMAT (16HOT@TAL ELEMENTS=, I6, 10X, 1OHT@TAL DgF=, I6)

The correct values of KW and any other device codes employed by
the user must be established at the beginning of the MAIN program.

2.1.2 Problem Size Parameters

CZMM@N /SIZE/ NET, NDT

These parameters define the problem size in terms of the
total number of elements (NET) and the total number of degrees
of freedom (NDT) in the whole structure. NDT includes both

\,
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constrained and unconstrained degrees., In standard solutions
these parameters are established at the beginning of the MAIN
program and remain fixed.

2.1.3 Address Index Parameters

CEMM@ZN /BEGIN/ IC@N, IK@UNT, ILNZ, IMASTR, IQ, IK
COMM@N /END/ LC@N, LK@UNT, LLNZ, LMASTR, LQ, LK

These parameters control the begin and end locations of
data sub-blocks in the /DATA/ vector. The user establishes cor-
rect values for these parameters by calling FEABL subroutine
SETUP after he has established the /SIZE/ block. Use of the
address index parameters to locate entries in the /DATA/ vector
is discussed in Subsection 2.2.

2.2 The /DATA/ Vector

DIMENSI@N REAL(xxxx), INTGR(xxxx)
C@MM@ZN /DATA/ REAL
EQUIVALENCE (REAL (1), INTGR(1))

The above declarations serve to define the /DATA/ vector
as a one-dimensional array occupying a C@ZMM@N area labelled
/DATA/ and having two reference names: REAL for floating point
entries and INTGR for integer entries. These declarations must
appear in the user-written MAIN program. The user chooses the
dimension integer "xxxx" to suit his particular needs. The
DIMENSI@N declaration with user's value for the length of the
/DATA/ vector must be inserted in each FEABL subprogram, immedi-
ately following the subroutine name declaration, e.g.:

SUBRQUTINE ASEMBL (LNUM, NDE, ELK, ZLQ)
DIMENSI@N REAL(1000), INTGR(1000)

Some compilers restrict the length of any vector to
32,768 words (8’000HEX)' If this restriction is encountered,
and the user desires a longer /DATA/ vector, say 50,000 words,

the following form of the declaration statements can be employed:

DIMENSI@N REAL(25000), INTGR(25000), DUMMY(25000)
C@MM@N /DATA/ REAL, DUMMY
EQUIVALENCE (REAL(1), INTGR(1))

" .,
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The C@HMMPN /DATA/ declaration must then be changed to the above
form in each FEABL subprogram.

The dual nature of the /DATA/ vector must be recognized
clearly. For example, the 100th entry in the vector may be
treated as either a floating point or an integer quantity in
arithmetic or logical instructions by operating, respectively,
with REAL(100) or INTGR(100). This property will lead to com-
pilation errors if the user attempts to save storage space by
declaring INTGR to be an array of 2-BYTE words (half-words),
while REAL is left as an array of normal 4-BYTE words (full words),
or if the user attempts to run in double precision mode for
floating point arithmetic,

! g The /DATA/ vector is organized into six blocks, the limits
of which are determined by the values stored in the address
index parameters (Subsection 2.1.3). In normal usage, the first
four blocks contain integer data and the last two contain float-
ing point data. Storage conventions are detailed in the follow-
; ing sections, in the order in which the blocks appear in the
/DATA/ vector.

‘ 2.2.1 Constraint Vector

This is an integer block which contains the global number

H of each degree of freedom at which a displacement is to be
‘ prescribed. Entries in the constraint vector are referred to’
by:

E INTGR(I) where IC@N<I<LCON
The following example 1llustrates user action invelving the con-
; straint vector

]
*

INTGR{IC@N) =2
INTGR(IC@N+1) =25
INTGR(LC@N) =6




By means of the above instructions the user has specifled that
global displacements 2, 25, and 6 will be prescribed. The pre-
scribed displacements need not be listed in any particular order.
Any excess space in the constraint vector 1s filled with zeros by
FEABL.

2.2.,2 Address Count Vector

This is an integer block which contains information re-
lating to the absolute address in the /DATA/ vector of each
diagonal entry of the master (global) stiffness matrix. Entries
in the address count vector are referred to by:

INTGR(I) where IK@UNT<I<LK@UNT
To obtain the relevant data for the Hth row, the correct subscript
is:

J=IKGUNT+N-1
INTGR(J) cuntains address information for row N

Normally, the user has no direct communication with the
address count vector; its contents are generated internally by
FEABL. The absolute address of each diagonal entry is output
for use in debugging. After the output, the data in the address
count vector are modified as follows:

Contents = (Absolute Address of Kii) -1

Subsequently, any stored® entry Kij can be obtained by
referring to:

REAL(KADR)
where the address is given by:

KADR = INTGR(TKGUNT+I-1)+J

2.8.3 Leading Non-Zero Entry Vector

The LNZ vector is an integer block containing the number j
of the column in which appears the leading non-zero entry Kij

¥
Many entries of the master stiffness matrix are not stored in
the /DATA/ vector. See Subsection 2.2.6 for details,
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of the master stiffness matrix for each row i. Entries in the
LNZ vector are referred tc by:

INTGR(I) where ILNZ<I<LLNZ
INTGR{ILNZ+N-~1) refers to row N,

Normally, the user has no direct communication with the
LNZ vector; its contents are generated internally by FEABL, and
are cutput for use in debugging and evaluating displacement
numbering strategiles.

2.,2.0 Master Assembly List

This 1s an integer block containing all of the information
which relates the user's local degree of freedom numbers to the
user's global numbering system. The master assembly list 1s, in
effect, a Boolean logical transformation between the element
displacement vectors, which together form a linearly dependent
set, and the global displacement vector, which is an independent
set., Entries In the master assembly list are referred to by:

INTGR(I) where IMASTR<I<LMASTR
The master assembly list need not be filled, but if it 1is not,

a zero must be stored immediately following the last active
position.

The master assembly list is subdivided into two sections,
as indicated in Figure 2.

. Zero must be
.L.Qﬂ.ﬁﬂ‘_in_/b_ﬂ:ﬂ/ Yector: s*!-o:eol by user

IMASTR IMASTR+ NET in first excess | MASTR

1 l lo ca'fiofn 1
? o v 1 ¢

Pointers .L Global Excess l
o Pt
DOF Numbers Stora

(One storage e .
location per element) (if any exists)

FIGURE 2
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The pointer section consists of one location per element, from
INTGR{IMASTR) to TNTGR(IMASIR+NET-1l), with the convention that
these locations correspond to the user's elements in ascending
order 1, 2,..., NET, LEach pointer contains the absolute address
in the /DATA/ vector of the location where the assembly list

for an element starts, as indicated in Figure 3.

IMASTR Ni=IMASTR+NET N2 N3

| | } |
it vz Ns_?} i

Element { + Element 2 Element 3 ;
< o T — '
Global Numbers ' Global Numbers! Global Numbers

Pointers for: ;
Element 3 :
Element 2
Element 1

FIGURE 3

The remainder of the master list contains the user's
element-by-element sequence of global displacement numbers.
As an illustrative example, consider the set of elements shown
in Figure 4, consisting of two 4-node rectangles and two 3=node
triangles, each with two degrees of freedom per node. The total
length required for the master assembly list 1s given by:

Pointers: 1l per elemente—cemcaaam- 4
Rectangles: 8 DOF/elementeeececc—aa 1€
Triangles: 6 DOF/elementecemmmmm—a—. 12
POPAL == e = rem e e m e 32

Suppose that IMASTR=101. Then the assembly information, correctiy
stored, would appear as shown in Figure 5.

12
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Local Numberins
Conventions for DOF

101 4102 503 04 los 106 107 lof dof l1o {44 U2 113 114 445 146

105|143 942851 1 2 | S |6 178 |T|4|5]|¢ |12
Peinters , Element @ Element @ =
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The following crude set of FZRTRAN instructions might be used to
store the assembly information shown above:

NEXT=IMASTR+4

INTGR(IMASTR)=NEXT (establishes pointer for 1lst element)
INTGR(NEXT)=1

INTGR(NEXT+1)=2

INTGR(NEXT+7)=U

NEXT=NEXT+8 . : . ;
INTGR(IMASTR+1)=NEXT (establishes pointer for 2nd element) 2
INTGR(NEXT)=5 :
INTGR(NEXT+1)=6 ;

INTGR(NEXT+5)=8 ;

NEXT=NEXT+6 :
: INTGR(IMASTR+2)=NEXT (establishes pointer for 3rd element) :
{ . .

The use of pointers in the master list allows assemblies :
involving as many different types of elements with different ;
total numbers of degrees of freedom as desired. Also the use
of DOF numbers rather than node numbers permits assemvly of
elements having different numbers of displacements at various
nodes without requiring any speclial programming or conventions.
The user may choose any element and displacement global numbering

ERETOLAWT R AT

PR N

% schemes and any local displacement numbering conventions he

E desires. The only restrictions are that: ;
; 1, There must be no gaps in the master assembly list, :
% 2. The array must be filled or, if excess storage exists,

i a zero must be stored after the last displacement

i number.

% 3. All element numbers and degree of freedom numbers

: must be positive.

4, The lowest element number and the lowest global degree
of freedom number must each be unity.

14
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2.2.5 Force/Displacement Vector

This is a floating point block which contains all of the
force and displacement information required for analysis of a
structure, Entries in the force/displacement vector are referred
to by:

REAL(I) where IQ<I<LQ
The Nth entry in the vector is the force Or displacement associ-
ated with the Nth global degree of freedom.

Various types of information are overlayed in the force/
displacement vector. First, if the structure being analyzed is
loaded by continuum body forces (e.g., gravity) or is in a thermal
environment, the resulting element equivalent nodal forces must
be assembled along with the element stiffness matrices, FEABL
subroutine ASEMBL uses the force/displacement vector as a storage
area for this purpose. Second, the user must introduce his glo-
bal concentrated nodal forces and prescribed displacements into
the force/displacement vector. Finally, the FEABL solution sub-
programs store the displacement solution in the force/displac-
ment vector by overwriting the prescribed quantities.

The following simple algorithm enables the user to com-
municate with the Nth global degree of freedom:

NN=IQ+N-1
REAL(NN)=...
or
L) o"f(REAL(I‘IN))
For example, suppose the structure in Figure 4 is to be given

the boundary conditions shown in Figure 6. Global degrees of
freedom 4 and 8 have concentrated forces A and B applied, respec-
tively, while degrees 12 and 15 have displacements C and D
prescribed, respectively. Displacements, 1, 2, 5, 6, 13, and 14
are prescribed to be zero. The following set of FORTRAN
instructions specify these boundary conditions:

15
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(a) Establishment of the constraint vector

INTGR(ICZN)=1

INTGR(IC@N+1)=2
INTGR(ICEN+2)=5
INTGR(ICGHN+3)=6
INTGR(IC@N+Y4)=12
INTGR(ICON+5)=13
INTGR(ICON+6)=1l
§ INTGR(ICZN+7)=15

(b) Input of the prescribed displacements:

REAL(IQ)=0.
REAL(IQ+1)=0.
| REAL(IQ+4)=0.

REAL(IG+13)=0.
REAL(IQ+11)=C
REAL(IG+14)=D
’ (¢) 1Input cf the presc.ibed forces:

REAL(IQ+3)=REAL(IQ+3)+A
| REAL(IQ+7)=REAL(IQ+7)+B

The instructions (b) and (c¢) have been written assuming that
element equivalent nodal forces have been assembled into the

J force/displacement vector. Thus, all degrees at which displace-
? ments are prescribed must be set to their correct values, while
L nonzero concentrated global forces must be added to the pre-

: existing assembled element forces,

14
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2.2.6 Master Stiffness Matrix

This floating point block contains the essential entries
of the master stiffness matrix, stored one row after the other.
Entries in the master stiffness matrix are referred to by:

REAL(I) where IK<I<LK
Normally, the user is not required to communicatve directly with
the master stiffness matrix, but an understanding of its detailed
organization will be helpful in debugging.

Since a stiffness matrix is always symmetric, only its
lower triangle need be kept in storage. Thus, the general or-
ganization of the master stiffness array in the /DATA/ vector
may be represented by the diagram shown in rFigure 7.

IK
}
K,

¢4 Ku Kaz Kn K:z kn K« Kq, Ku Kﬁ Kn Kn J

<

Row { )'_Raw Z'_’___RDV 3__*‘___Row 4 Row § ,,.
FIGURE 7

Significz it additional savings in storage may bve realized for
problems with many degrees of freedom by taking advantage of
the fact that a master stiffness matrix is normally banded and
sparsely populated. The boundary line of the shaded area in

Figure 8 represents the leading non-zero entry locations in a
hypothetical stiffness matrix. FEABL subprograms which operate
on the master stiffness matrix incorporate logic instructions
which cause the operation to be skipped if the entry Kij lies

in the unshaded area of Figure 8. Thus, the leading zero entries
for each row are not stored, and this is where the address count
vector and the LiiZ vector come into play. The actual organiza-
tion of the master stiffness array consists of a sequence of
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variable-length sections for the rows of the stiffness matrix.
Figure 9 illustrates a sample sequence.
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The algorithms for operating on the master stiffness matrix,
based on the contents of the address count and LNZ vectors are
quite simple:

SFor an operation on KiJ: row I, column J, J<I)

INDEX=ILNZ+I-1 .

IF (J .LT. INTGR(INDEX)) G@ T2 5

KADR=IKOUNT+I-~1

KADR=INTGR(KADR)+J

(To define address of ij in master stiffness array)

(Operate using REAL(KADR) for KiJ)

5 (Skip operation if J<LNZ column number for the row)

2.3 Modification of the FEABL Data Storage System

The data storage system presented above has been designed
for "production" computing. It has been assumed implicitly that
the user will be conducting a great number of studies involving
similar stress analysis problems and employing nearly the same
number of degrees of freedom. Thus, the /DATA/ vector need be
DIMENSI@Ned only once, after which production object decks of
the FEABL software may be made,

However, the FEABL software may also be placed in on-line
storage in a form which will handle problems of widely varying
size, with only minor modifications. These modifications are
as follows:

1. Delete the C@MM@N /DATA/ REAL declaration from all

programs and subprograms,

2. Delete the EQUIVALENCE (REAL(1l), INTGR(1)) declaration

from all subprograms. (Retain this declaration in
MAIN.)
3. Use the standard declaration:
DIMENSI@N REAL(2), INTGR(2)
in all FEABL subroutines. (DIMENSI@N the /DATA/
vector properly in MAIN,)
, Add the array names REAL and INTGR as arguments of

19




all FEABL subroutines, e.g.:

SUBR@UTINE @RK(LENGTH, REAL, INTGR)
SUBRGUTINE FACTPD(REAL, INTGR)

When the on-line version of FEABL 1s used, only the DIMENSI@N
declaration for the /DATA/ vector in the user's MAIN program
need b€ changed to perform analyses requiring different amounts

of data storage.
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SECTION 3

FEABL PROCESS CONTROL

3.1 General

For present purposes the finite element analysis of a
structure will be divided into eight programming stages:

1.

2.

Establishment of input/output device codes, problem
size, and address index parameters,

Input of the master assembly list and organization

of the master stiffness matrix into corresponding
segments,

Generation and assembly of element stiffnesses (and
nodal equivalent forces, if any) in global coordinates.
Application of rotation transformations to the master
stiffness matrix (and assembled nodal equivalent forces)
at any nodes at which the boundary conditions are

to be given in special coordinate systems.

Input of the prescribed quantities, i.e., global num=-
bers at which displacements are to be prescribed,
values of prescribed displacements, and accumulation
of values of any nonzero global concentrated forces.
Application of constraints to the master stiffness
matrix and force/displacement vector.

Solution for the master displacement vector.
Application of inverse rotation transformations to

the master displacement vector, at any nodes where

a rotation was applied in stage U, to produce a master
displacement vector entirely in the global coordinate
system.

Extraction of element displacement vectors from the
global vector; calculation of element stresses from
the element displacement vector.

21
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Specific FEABL subprograms are assoclated with each of the above
stages, according to the following table:

Stage FEABL Subroutines Stage FEABL Subroutines
1 SETUP 5 BC@N
2 @RK 6 FACTPD/FACTSD, SIMULQ
3 ASEMBL 7 R@TATE
y ' R@TATE 8 XTRACT

Figure 10 illustrates the standard FEABL process sequence in terms
of the eight stages described above.

Analysts who are just beginning to work with FEABL are
advised to observe strictly the standard process sequence out-
lined above., This sequence will be described in full detail
in Section 4. iore experienced analysts may find it convenient
to depart occasionally from the standard process in order to
reduce program length,

3.2 Description of the FEABL Software

The FEABL package consists of the eight subroutines liisted
in the table in Subsection 3.1, Each subroutine is associated
with a particular stage in the standard process sequence (except
ROTATE, which is assoclated with both stages 4 and 7). All FEABL
subprograms are ready to use for in-core finite element analysis,
once the DIMENSI@N declaration for the /DATA/ vector has been
inserted (see Subsections 2.2 and 2.3). The following subsections
demonstrate how each of the FEABL subroutines is called, define
the subroutine arguments, and outline briefly what the subroutine
does. A summary table of the COMM@N area information required
by each FEABL subroutine is given in Apnendix A, Listings appear
in Appendix C.
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3.2.1 Housekeeping Setup Subroutine for /DATA/ Vector
(SETUP)

CALL SETUP(LENGTH, NC@N, MASTRL)

LENGTH - A scalar integer numerically equal to the dimen-
sion which the user has assigned to the /DATA/
vector.

NCON - A scalar integer éreater than or equal to the
total number of degrees of freedom, in the assem-
bled structure, at which displacements are to
be prescribed.

MASTRL - A scalar 1integer greater than or equal to the
total number of words required for the master
assembly list.

Based on NC@N, MASTRL and the total number of degrees

of freedom in the entire assembled structure (NDT, in the /SIZE/
group), subroutine SETUP organizes the /DATA/ vector by calcu-
lating the address index parameters in the /BEGIN/ and /END/
groups, except for the index LK which defines the end of the
block reserved for the master stiffness matrix., SETUP uses the
argument LENGTH to test whether the user's /DATA/ vector has

at least enough storage available to accommodate the first four
data blocks (constraint vector, address count vector, LNZ vector
and master assembly list). If the /DATA/ vector 1is too short,
SETUP estimates the total length required for all six data blocks,
based on a reasonable population density for the lower triangle
of the master stiffness matrix, prints the estimate and aborts
the run, If the first four blocks can be accommodated, the con-
straint vector is filled with zeros and control is returned to
MAIN.
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3.2.2 Subroutine for Detailed Organization of the Master
Stiffness Matrix Block {£RK)
CALL ORK(LENGTH)
LENGTH - A scalar integer numerically equal to the dimen-
sion which the user has assigned to the /DATA/
vector.

Subroutine @PRK produces, in essence, a map for the master
stiffness matrix like that of Figure 9, using the information
contained in the master assembly list to calculate the correct
values of the entrles in the LNZ vector. This is accomplished
by first setting each LNZ column number equal to its row number
(diagonal matrix), and then examining the assembly informetion
element by element to re-set the LNZ column numbers, according
to the following algorithm:

1, The smallest global number N for the element is found.

2. The element's global numbers are then treated as

row numbers, If the LNZ column number corresponding
to a row (global number) is greater than N, its value
is re-set to N.
Once the LNZ vector has been established, subroutine @RK uses 9
an accumulation process to calculate the absolute address of
the diagonal entry of each row, By convention, the diagonal :
is the only entry stored for the first row and is therefore located
by the address index parameter IK:

INTGR(IK@UNT)=IK

Subsequent entries are located by the algorithm:

INTGR(IKGUNT+M~1)=INTGR( IKGUNT+M~2)+M+1~-INTGR(TILNZ+M-1)
(Diag Addr for Mth row)=(Diag Addr for row M-1l)+(Total no.
of nonzero entries in Mth row)

} Conveniently, the address of the diagonal for the last
row in the master stiffness matrix is also the correct value

5 of LK. Subroutine @RK now tests the /DATA/ vector by means of
i the argument LENGTH. If the /DATA/ vector is too short for the
problem data, an exact calculation of its required length is
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output and the run is aborted. If sufficient storage is avail-
able, the stiffness matrix map is output and the address count
vector is modified by:

INTGR(IK@UNT+M-1)=INTGR(IK@UNT+M~1)-M; 1<M<NDT
for all rows, M. This saves repeated subtraction of the row
number in later subprograms. The correct algorithm for locating
K... in the /DATA/ vector is now:

KADR=INTGR(IK@UNT+M-1)+N; M>N
Ky 1s assigned to REAL(KADR)

Since the next stage of the analysis will involve the accumulation
of data in the master stiffness matrix (and perhaps in the force/
displacement vector), @RK's last action before returning control
to MAIN is to fill these two data blocks with floating point
zZeros.

MN

3.2.3 Element Assembly Subroutine (ASEMBL)

CALL ASEMBL(LNUM, NDE, ELK, ELQ)
LNUM - A positive scalar integer = user's global element
number

NDE A scalar integer = total number of degrees of free-

dom possessed by the element which is about to

be assembled

A floating point, two~dimensional square array

which contains the stiffness matrix of the element
about to be assembled.

A floating point vector which contains the equiva-
lent nndal forces for the element about to be assem-
bled, cor which contains floating point zeros if
there are no equivalent nodal forces.

Since ELK and ELQ are variably DIMENSI@Ned in this sub-
program, elements having different numbers of degrees of freedom
can be handled automatically., However, these arguments must
be DIMENSI@Ned explicitly in the user's MAIN program. For example,
suppose a structure is to be analyzed in plane stress with a

ELK

ELQ
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combination of 3-node triangle elements (6 degrees of freedom)
and 4-node rectangle elements (8 degrees of freedom). Then the
declaration:

DIMENSI@N TRIK(6,6), TRIQ(6), RECK(8,8), RECQ(8)
might appear in MAIN., A triangle element would be assembled
by the instruction:

CALL ASEMBL(LNUM, 6, TRIK, TRIQ)
while a rectangle element would be assembled by:

CALL -ASEMBL (LNUM, 8, RECK, RECQ)

Subroutine ASEMBL can handle elements having as many as one hun-~
dred degrees of freedom (not a serious restriction). If the
assembly of larger elements is attempted, ASEMBL will abort the
run and tell the user to change the DIMENSIgN of one of its
internal parameters.

ASEMBL examines the section of the master assembly list
belonging to element number LNUM and records the values of the
global displacement numbers in an internal vector called MNUM.
Then, each entry KiJ of the lower trilangle of the element stiff-
ness matrix (iZJ), is accumulated into its proper place in the
master stiffness matrix, according to the algorithm:

I=MNUM(1)

J=MNUM(j)

K1J+KIJ for I>J

K1 57%51 for 1<7
(See Subsection 3.2.1 for address algorithm for KIJ') ASEMBL
does not us@e the upper triangle (i<j) of the element stiffness
matrix; the user may omit calculating these entries to save time.
The vector ELQ of element equivalent nodal forces is accumulated
in the same manner into the proper locations in the master force
vector (fifth block of the /DATA/ vector).

27
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3.2.4 Rotation Transformation Subroutine (R@TATE)

CALL R@PTATE(N@DE, IR@W, JR@W, KR@W, ZANGLE, YANGLE, XANGLE)
N@DE - A scalar integer "convenience" number for the user.
May be positive or negative but not zero. (See
explanation below.)

IROW » Three scalar integers equal to the global numbers

JREW | of the degrees .qf freedom at the node at which

KR@W the rotation 1s to be performed.

ZANGLE L Floating point values of the three Euler rotation

YANGLE angles in degree measure,

XANGLE

The argument NZDE does not enter directly into the trans-
formation calculations, but is printed out in the heading of
the information supplied by R@GTATE. Normally, the user assigns
either his node numbers or the series 1, 2, 3,... to a set of
rotations. A positive value of N@DE causes the full subprogram
to execute, and 1is used for stage 4 in the process sequence.
In stage 7, only the solution displacement vector requires trans-
formation; a negative value of N@DE will cause execution of the
now unwanted transformation of the stiffness matrix to be skipped.

The global numbers of the degrees of freedom at the node
being rotated may be contiguous (e.g., 13, 14, 15) or separated
(e.g., 5, 10, 15) depending upon the global numbering scheme
the user has adopted. Either form is acceptable to this subpro-
gram., If only two degrees of freedom are to participate in the
rotation (as, for example, in plane stress problems), an integer
zero must be specified for the third global number. If six de-
grees of freedom are to participate (e.g., shell elements), two
separate rotations are required, i.e., one CALL for the trans-
lational and one for the rotational degrees of freedom, Errors
in the global number arguments (e.g., repeating a number or too
many zeros) will cause an abort.

28

i
-‘d
o
=
£
1]
g
H
3
g
b
b
fo
k4

B S TAnTS A IR - L S

LY

D s

P e



.

e e S V=

PSR -

The three Euler angle arguments must be specified according
to the conventions 1llustrated in Figure 11l. Let XY¥Z be the
user's global cartesian axls system, with respect to which the
element stiffness and equivalent ncdal forces have been generated
and assembled., Let i?g by a local coordinate system with respect
to which the displacement constralints are to be specified.
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E
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FIGURE 1l
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The following conventions have been adopted in subroutine R@TATE:

1., Axes X, Y are first rotated through angle ZANGLE about
axis Z to the intermediate positions x, y.

2. Axes x, Z are then rotated through angle YANGLE about
axils y, x to the final position'i and Z to an inter-
mediate position z,

3. Axes y, z are then rotated through angle XANGLE about
axis X to their final positions ?, 7.

4, Positive angles obey the "right hand rule" of vector
analysis.

Subroutine ROTATE forms the matrix of direction cosines:

o ~ ~

cos(X, X) cos(X, Y) cos(X, 2)

D - cos(f, X) cos(f, Y) cos(?, Z)
cos(Z, X) cos(z, b Q] cos(Z, 2)

from the values of the Euler angles supplied in the argument
list, Then, if argument N@DE is positive, RPTATE applies the
following transformations to portions of the master stiffness
matrix K  where i, J, k are the global numbers specified

by the user:

7/

Kia  Kyy o Ky

K K K lfr
Dk Ky Kk

Kes Ky Kpx

N

(" K ;

Ky RyoeeeeByaon Kygwreoo®y go1 Ky gene i ko1 Ky gereee
D KJl KJ2....KJ’iml...

K. K

kl e e b
§ K2

30

.
B T




o e AR SR T A Y T ST

[
[y

1J
2]

1k

= =

N
e

2k

_———_
ces =N

Reee

1.1,1 1-1,] T

-

i+1,1

j=1,1
§¥1,1

k-1,1

= RNeee = Rese X

k+1,1

Finally, the corresponding entries of the force/displacement
vector are transformed according to:

Q

D Qy

QU

A few examples will illustrate the proper use of subroutine
RPTATE. First, suppose that global degrees of freedom 1 and 2
are to be rotated by 45 degrees at node 1 in a plane elasticity
problem. The correct instruction is:
CALL R@TATE(1l, 1, 2, 0, U5,, 0., 0.)
To return the force/displacement vector to the user's global
axls system after the displacement solution has been obtained:
CALL R@TATE(-1, 1, 2, O, -45,, 0., 0.)
Note that only the first angular argument ZANGLE 1s used in two-
dimensional problems, In a three-dimensional problem, to rotate
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degrees 4, 5, 6 at node 2 through angles of 15, 30 and 45 degrees
about the Z, y and f axes:

CALL R@TATE(2, 4, 5, 6, 15., 30., 45.)
and after the displacement solution has been obtained:

CALL R@TATE(-2, 4, 5, 6, =U45,, =30., =15.)
Note that not only the signs, but alsc the order of application
of the angles is reversed. However, some care is required in
three dimensions. Suppose degrees 7, 6§, 9 at node 3 were rotated
only about axes Z and y:

CALL R@TATE(3, 7, 8, 9, 20., 40., 0.)
Then to reverse the rotation after obtaining the displacement
solution:

CALL R@TLTE(~-3, 7, 8, 9, -40., -20., 0,)
Note that the unused XANGLE does not participate in the reversal.
The instruction:

CALL R@TATE(-3, 7, 8, 9, 0., ~U0,, =-20.)
would be incorrect.

3.2.5 Boundary Constraint Subroutine (BC@N)

CALL BC@N

Let u, Q represent respectively the global* displacement
vector and the global force vector, The result of the first
four program stages has been to supply a right-hand side

and the stiffness coefficients K1J for the force-displacement
r2lations:

Ku= @

However, the value of u 1s known at some degrees of freedom,
with the corresponding Q unknown, while the value of Q 1is known

"The term "global" should be taken in a more general sense here.
It refers to the final set of coordinate systems XYZ in which
the user will prescribe hils boundary conditions,




at the other degrees,
Conceptually, the set of all degrees of freedom in the
structure may be divided into two subsets: Those at which forces

are prescribed (P) and those at which displacements are
prescribed (D). When the user specifies the values of the pre-
scribed quantities, ‘Q becomes a "force/displacement" vector

in fact:
aF (uAn means a
Q= &:D prescﬁbe& %uantity)
and:

uF = unknown displacements
‘?D

The force-displacement relations may be partitioned in a similar

unknown reaction forces

manner:
A
Kee Ky |Juel | Q
K, Kp (&
o Ko Jldp) (@

Subroutine BC@N transforms the force-displacement relations from
the above form to:

A A
Kee O |[ur( Qe Kl
A
(0] I t’l;, uD

With the above "right hand side" in the force/displacement vector,
standard equation-solving techniques may be used to produce the
solution displacement vector. Before making the transformation,

BC@N arranges the entries of the constraint vector (Subsection 2.2.1)
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in ascending order and checks for the preserce of global numbers

(positive integers). The run is aborted if no global numbers
are found.

3.2.6 Stiffness Matrix PFactoring Subroutine (FACTPD/FACTSD)

CALL FACTPD
or
CALL FACTSD
The force~displacement relations are solved by Choleski's
direct method, which consists of two programming steps:
1. The master stiffness matrix is factored into a triple
product.
2. The displacements are solved for sequentially, in
three sub-steps.
Subroutine FACTPD/FACTSD accomplishes the first programming step.
The master stiffness matrix K is factored into the form:

T
K=LDL
where L is a lower triangular matrix:
/ N
1 0 0 Osos
L21 1 0 Ocan
L= L31 L32 1 Oeue
Lul L42 Lu3 l...
L. L] L] [ /
and D = ‘rDl D2... } is a diagonal matrix. The factor-

ing algorithms are:
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where:

J(n) = Leading Nonzero Entry Column Number for Row n
J(m) = Leading Nonzero Entry Column Number for Row m
J(m,n) = max(J(n), J(m))

The master stiffness matrix is destroyed and replaced by the
entries of L and D as the factoring process is executed.

The entries Lmn (m>n) and Dm are stored respectively at Kmn (m>n)
and Kmm' The unit diagonal entries of L  are not stored.
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FACTPD/FACTSD tests the entries of D for nonsingularity
and positive~definiteness as they are created, K is positive-
definite if all Dm>0. Rows for which Dm<0 are reported. If any
Dm is found to equal zero exactly, K s singular; the row in which
the singularity was discovered is reported and the run is aborted.

The names FACTPD and FACTSD refer to different entry points
in this subprogram. If K is §upposed to be positive-definite
(as in the case of a structure analyzed by compatible displace-
ment elements), FACTPD should be called., If errors were made
in the assembly or constraint stages .f the program, they will
appear now as Dm<0 in one or more rows, and FACTPD will abort
the run, If K 1is not necessarily positive-~definite (as in
the case of a structure analyzed by hybrid stress-displacement
elements), FACTSD should be called, FACTSD continues executlon even
if there exist Dm<0. If the FEABL software i1s to be converted
to the on-line storage version (Section 2.3), be sure to make
the array names REAL, INTGR arguments of both entry points,.
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FACTPD/FACTSD also makes a rough estimate of the condition-
ing of K by calculating the so-called rounding error parameter

(see Ref. 2, pg. 81):
E = min (lD"‘l /lemI)

E is a measure of how many significant figures of information

have been lost in the diagonal entries, as a result of the factor-
ing algorithm. The run is aborted if E<10'5. The user must

keep in mind the fact that the rounding error parameter is an
imperfect conditioning measure, If FACTPD/FACTSD reports that

no significant figures have been lost, it does not necessarily
follow that there is no error in the displacement solution.
Advanced techniques for realistic sclution error estimates are

discussed in Section 5.
3.2.7 Subroutine for Solution of Simultaneous Equations

(SIMULQ)
CALL SIMULQ(ENERGY)
ENERGY - A scalar floating point variable, the value of
which 1s undefined when SIMULQ is called.
With the stiffness matrix in factored form K= LDWL,

let P=Lw and R=DP . Then:

LR=Q
can be solved sequentially for R,, R,,..., Rypp via the algorithm:
B1*%
m-4
Rm= QR ”,2 (L"‘J RJ) 3y m=2,3 ... ,NDT

;-"J'(n)

Then:

Po= Ru /Dy 5 met,2, .00y NDT
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Finally, the displacement solution is obtained by solving LTur-P
sequentially for Uypm, Uypp_jseees Ug according to:

P VAR RS oy e N =

Unpr = Popr

NOT

=R -L ( )5 me NDT-1, NDT-2, ..., 4

U L M
jvmu A

m

T 3 T e ey ST

\
\
h As SIMULQ carries out these three sub-steps, the prescribed
| vector & is first replaced by R , then R is replaced by P
and finally P is replaced by & . Q and % are printed
out by SIMULQ.

Since the approximate value of the strain energy in the

S

g structure is often useful to the analyst, this quantity is cal-
culated by SIMULQ during execution of the solution steps., 1If
the factored form of K is introduced into the strain energy
expression, there results:

PDP

Nl

Strain Energy= -%.- u"Ku = % (u™L ) D(Lu) =

Thus, the straightforward algorithm:
. NDT 2
Strain Energy= % 23 D, (P) :
J‘i (’ J ;
can be used., The value of the straln energy thus calculated

is printed out. At the end of execution of subroutine SIMULQ,
the force/displacement vector (fifth block in the /DATA/ vector)
contains the master displacement solution vector, and the strain ;
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energy value has been assigned to the argument ENERGY.

3.2.8 Subroutine for Extraction of Element Displacements
from the Global Displacement Vector (XTRACT)

CALL XTRACT(LNUM, NDE, ELQ)

LNUM - A positive scalar integer equal to user's global

element number

37

|
|
i
|
!
!




NDE - A scalar integer equal to the total number of degrees
of freedom in the element
ELQ - A floating point vector at least NDE words long.
The entries of ELQ are undefined when XTRACT is
called.
If the analyst desires to calculate stress or strain dis-
tributions in his structure, he ccmmenly uses transformations
between stress or strain and nodal displacements:

&= By, o=E¢

where €, 0" are respectively vectors of strain and stress com-
ponents at selected points in the element domain, and where

U, 1s the vector of element nodal displacements, i.e., a subset
of the global vector W . Subroutine XTRACT selects the correct
subset ¥, out of U , based upon th2 information contained

in the user's master assembly list. The values of ¥, are
placed in the argument vector ELQ.
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SECTION 4

A SAMPLE FEABL PROGRAM

In order to illustrate further the data location and
process sequence interfacing, sample user programs will be de- :
veloped for analysis of the truss structure shown in Figure 12.

The structure consists of 16 bars and 18 degrees of freedom in
the XY plane,

i

1,000 tb.

Conventions
for a

typical bar

S
*
&
End
§
4
{
B

4R

FIGURE 12

Local number conventions for the ()!ﬂxtypical bar element are
shown at the right. With these conventions, the stiffness matrix
of the typical bar element is given by:
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~
g (‘.'O.SAz "4 (Symme'*‘l'ic)
EA Sina cosol sin* ¢
k®= 7 - costa - Sina cos o cos?«x
L~sina<c’oso( ~ sin*« Sin& cos & sinzac/

where:

L= (x )+ (VY™

Y. -v,)

i

cosu = 7 (Xz-)(i)
SV
Sma(-l (

and where E, A are the bar's modulus and cross section area.
Also, once the displacements Uy Uy, u3, u, are known for the
element, its clicngation may be calculated as:

§ = (ug~u,) cos + (uy~tty) sin
and the load in the bar is then given by:

P=EAS/Z

where ¥ and « are defined as above,

The user decides to read the properties and nodal coordi-
nates for each element, each time they are required (a rather
inefficient procedure). Reading is to be done by the generator
subroutine, rather than in MAIN; however, the card reader device
code will be established in MAIN, Therefore, the user programs

his stiffness matrix and stress generator subrcutines as follows:

4o
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Stiffness Matrix Generator

SUBR@UTINE BARK (ELK, ELQ)
DIMENSI@N ELK (4, u4), ELQ (4)
COMM@PN /I@/ KR, KW, KP, KT1, KT2, KT3
C INTERFACE WITH I@ C@NTR@L PARAMETERS IS @PTI@NAL
91 F@RMAT (6E10,3)
READ (KR, 91) X1, Y1, X2, Y2, E, A
C CALCULATE BAR LENGTH
BARL=SQRT ((X2-X1)#*¥ 24(Y2-Y1)*¥* 2)
| C CALCULATE SINE AND C@SINE
S=(Y2-~Y1) /BARL
C=(X2-¥1)/BARL
C CALCULATE £NTRIES IN L@WER TRIANGLE @F ELK-ASEMBL D@ES
C N@T USE UFPER TRIANGLE
ELK (1, 1)=E¥A¥C¥C/BARL
| ELK (2, 1)=E¥A¥%S¥C/BARL

ete.

o o

ELK (4, 4)=E*A%S*S/BARL
C ESTABLISH ZERg ELEMENT EQUIVALENT N@DAL F@RCES
D 10 I=1, 4
10 ELQ (I)=0.
RETURN
END

Stress Generator

SUBRGUTINE BARF (LNUM, ELQ)
DIMENSI@N ELQ (U4)
C@MMZN /I1I@/ KR, KW, KP, KT1l, KT2, KT3
91 F@RMAT (6E10.3)
92 F@RMAT (21HOBAR F@RCE IN BAR Ng., I4, 2H =, E10.3, 3H LB)
‘ READ (KR, 91) X1, Y1, X2, Y2, E, A
> BARL = SQRT ((X2-X1)¥# 2+4(Y2-Y1)¥*¥2)
: S=(Y2-Y1)/BARL
C=(X2-X1)/BARL
FORCE=E*A*(C*(ELQ(3) - ELQ (1)) + S*¥ (ELQ(4)-ELQ (2)))/BARL
WRITE (KW, 92) LNUM, F@RCE
RETURN
END
Subroutines BARK and BARF are ready to use in conjunction with
the FEABL software., The user now begins the construction of

! his MAIN program, one stage at a time.
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Stage 1: Program Heading (Data Location Interface), Device
Code and Problem Size Establishment

Pty

The user estimates that a 1000-word /DATA/ vector will
be more than adequate for the problem. Required device codes

are the card reader (5) and printer (6).

C MAIN PR@CRAM FPR SPLUTIH @F TRUSS PR@BLEMN
DIMENSI@N REAL(1000), INTGR(1000)
DIMENSI@N ELK(H, 4), ELQ(4)
COMM@N /I®/ KR, KW, KP, KT1, KT2, KT3
C@MM@N /SIZE/ NET, NDT
CEZMM@N /BEGIN/ ICON, IKQUNT, ILNZ, IMASTR, IQ, IK
CZMM@N /END/ LC@N, LK@UNT, LLNZ, LMASTR, LQ, LK
EQUIVALENCE (REAL(1), INTGR(1))
KR=5
KW=6
NET=16
NDT=18
CALL SETUP (1000, 5, 80)
C END gF STAGE 1

The user has called for space for five constraints: master
dispiacements 2 (after a =45° rotation of 1 and 2), 7, 8, 13
and 14, The assembly list must allew room for 16 elements x
(4 DOF plus 1 pointer per element) = 80 words. The first

AT A Ty
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declaration:
: DIMENSI@N REAL(1000), INTGR(1000)
is also duplicated and placed in each FEABL subroutine.
Stage 2: Assembly List Input and Organization of K

The user recoghnizes that the pointers will occupy locations
IMASTR to IMASTR+15 (see Section 2.2.4)., He chooses to write
specific assignment instructions for each element:

3 INTGR(IMASTR)=IMASTR+16 (Pointer for 1lst element)
-4 INTGR(IMASTR+16)=1
3 INTGR(IMASTR+17)=2

INTGR({ IMASTR+18)=7

INTGR(IMASTR+19)=8
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Stage l: Program Heading (Data Location Interface), Device
Code and Problem Size Establishment

The user estimates that a 1000-word /DATA/ vector will
be more than adeguate for the problem. Required device codes

are the card reader (5) and printer (6).

C MAIN PRPGRAM FgR SPLUTI@N @F TRUSS PR@BLEMN
DIMENSI@N REAL(1000), INTGR(1000)
DIMENSI@N ELK(Y4, 4), ELQ(4)
COMM@N /I@/ KR, KW, KP, KT1, KT2, KT3
COMM@N /SIZE/ NET, NDT
CEMM@N /BEGIN/ IC@N, IKQUNT, ILNZ, IMASTR, IQ, IK
CPMM@N /END/ LCON, LK@UNT, LLNZ, LMASTR, LQ, LK
EQUIVALENCE (REAL(1), INTGR(1))
KR=5
Kw=6
NET=16
NDT=18
CALL SETUP (1000, 5, 80)
C END gF STAGE 1

The user has called for space for five constraints: master
dispiacements 2 (after a -45° rotation of 1 and 2), 7, 8, 13
and 14. The assembly list must allow room for 16 elements x
(4 DOF plus 1 pointer per element) = 80 words. The first
declaration:

DIMENSI@N REAL(1000), INTGR(1000)
is also duplicated and placed in each FEABL subroutine.
Stage 2: Assembly List Input and Organization of K

The user recognizes that the pointers will occupy locations
IMASTR to IMASTR+15 (see Section 2.2.4). He chooses to write
specific assignment instructions for each element:

INTGR(IMASTR)=IMASTR+16 (Pointer for 1lst element)
INTGR(IMASTR+16)=1
INTGR(IMASTR+17)=2
INTGR(IMASTR+18)=7
INTGR(IMASTR+19)=8
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INTGR(IMASTR+7)=IMASTR+44 (pointer for 8th element)
INTGR(IMASTR+44)=T7
INTGR(IMASTR+45)=8
INTGR(IMASTR+46)=9
INTGR{IMASTR+47)=10

INTGR(IMASTR+15)=IMASTR+76 (pointer for 16th element)
INTGR{ IMASTR+76)=T

INTGR(IMASTR+77)=8

INTGR(IMASTR+78)=15%

INTGR(IMASTR+79)=16 (80th location in master assembly list)

At this point, it is advisable to dump the assembly list for
debugging purposes if there is any doubt about its accuracy.
Dumping may be done by:
WRITE (XW, 5) (INTGR(I), I=IMASTR, LMASTR)
5 F@RMAT (1X, 101I10)
Finally:
CALL @#RK(1000)
C END @F STAGE 2
Stage 3: Generation and Assembly of Element Properties
In this stage, the user merely invokes the appropriate
subroutines in a loop.

D@ 10 LNUM=1, NET
CALL BARK (ELK, ELQ) '
CALL ASEMBL (LNUM, 4, ELK, ELQ)
10  CONTINUE
C  END @F STAGE 3

Stage U: FRotation Transformations

In the present problem, only the lower left node (Figure 12)

requires rotation., Master degrees of freedom number 1 and 2
must be rotated by -45 degrees.

CALL ROTATE(1, 1, 2, 0, =45., 0., 0.)
4 + 4

AY

Quantities for 3-D problems are not used

C END @F STAGE 4

h3




Stage 5: Boundary Conditions

Displacements 2, 7, 8, 13, il are constrained, and the
constraint vector starts in INTGR({(1l) (IC@N=1). Therefore:

INTGR(1)=2
INTGR(2)=7
INTGR(3)=8
INTGR(4)=13
INTGR(5)=14

The constrained displacements are all prescribed to be zero.
Only the nonzero prescribed forces need be input; these are 1,000

lb. each at the 15th and 17th degrees of freedom. Therefore:

C PRESCRIBED DISPLACEMENTS

REAL(IQ+1)=0.
REAL(IQ+6)=0.
REAL(IQ+7)=0.
REAL(IQ+12)=0,

REAL(IQ+13)=0,

C ACCUMULATE PRESCRIBED F@RCES
REAL(IQ+14)=REAL(IQ+14)+1000.
REAL(IQ+16)=REAL(IQ+16)4+1000.
CALL BC@N

C END @F STAGE 5

Stage 6: Choleski Solution

CALL FACTPD
CALL SIMULQ(ENERGY)
C END gF STAGE 6

Stage 7: Inverse Rotation to Obtain Global Displacements in
Global Cartesian Coordinates

A rotation of ~U5° was performed at node 1 before the
boundary conditions were imposed. Since all element calculations
are done with respect to the unrotated XY axls system, thils rota-

tion must be reversed before element stresses are calculated:

CALL R@TATE(-i, 1, 2, 0, 45., 0., 0.)
C END @F STAGE 7

Stage 8: Calculation of Element Stresses

In this case, bar forces are to be calculated. Again,
the user merely invokes the proper subroutines:

Ly
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D@ 20 LNUM=1, NET

CALL XTRACT (LNUM, 4, ELQ)

CALL BARF (LNUM, ELQ) ;

20 C@NTINUE :

C END @F PROG i

ST@P :

END

If the reader has grasped the material presented up to
this point, he now has enough familiarity with FEABL to use it,
albeit somewhat inefficiently. However, some additional degree
of sophistication is desirable for the instructions which iaput
problem data such as the assembly list, It is apparent that
a straightforward et of instructions such as that given in the
sample program is quite cumbersome, especially for problems in-
volving more elements with more degrees of freedom per element.
Improved programming techniques are discussed in the next
section,

[
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SECTION 5

ADVANCED TECHNIQUES WITH FEABL

5.1 Efficient Programming for Large Problems

When a structure is to be analyzed with a large number
of elements and many degrees of freedom, there often occurs a
definite trend toward regularity in the element set. The analyst
should recognize two distinct forms of regularity, and he should
be prepared to take advantage of each in writing his MAIN program.
First, consider the truss structure shown in Figure 13,
with all bays having the same dimension vertically and horizontally.

FIGURE 13
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The bar elements may be sald to possess a degree of regularity,
in that there are only four different types of elements in the
structure:

1, Horizontal bars

2. Vertical bars,

3. +445° diagonals.

y, ~45° diagonals.
Since an element stiffness matrix depends upon nodal coordinates
only through differences in the coordinate values (see beginning
of Section 4), there will occur only four independent element
stiffness matrices for the structure of Figure 13: one for each
of the element types listed above, Thus, for example, the element
stiffness matrix for a typical horizontal bar may be generated
once and assembled repeatedly (32 times for the present case).
The technique may be repeated again for the 30 vertical bars,
24 +45° diagonals and 24 -45° diagonals, achieving considerable
savings in execution time.

The second form of regularity involves the way in which
displacements and elements may be numbered, Often an element
set is topologically equivalent to a rectangular or square array,
even if 1t 1s not geometrically regular. For example, suppose
the trapezoidal continuum shown in Figure 14(a) is to be analyzed
in plane stress using 32 3-node triangle elements. For numbering
purposes the element and displacement sets are topologically
equivalent to the square net shown in Figure 14(b), It is then
possible to generate the assembly list for the structure by a
double D@ loop. Each element is "located" in the structure via
an intersection of one of the element strings LX and one of the
element strings LY. The element number and its master displace-
ment numbers may be generated from the values of LX and LY.
Taking advantage of numbering regularity enables the user to
input large ections of the assembly list with relatively few
F@RTRAN instructions.
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5.2 A Numbering Strategy for Planar Problems

Suppose the set of MxN rectangular plane stress el:ments
shown in Figure 15 is to be assembled, where M, N may be quite
large. If the numbering strategy shown in the figure is adopted,
beginning with element 1 and displacements 1, 2 at the lower
left corner and ending with element MN and displacements
¢(M+1) (N+1)-1, 2(M+1l) (N+1) at the upper right corner, then
each element number can be given as a function of its LY, LX
string coordinates: ,

LNUM=LY+N¥(LX~1) where 1<LY<N and 1<LX<M
In order to create similar functions for the element assembly
list, a local numbering convention must be adopted. If the
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convention shown is Figure 15 is used, the global DOF numbers
may be calculated as follows: Local displacements 1, 2 can be
considered to lie on strings LX, LY; hence:

(Local #1)=2%LY~1+2¥(N+1)*(LX-1)
(Local #2)=(Local #1)+1

Local displacements 7, 8 follow directly from the master numbering
scheme:

(Local #7)=(Local #2)+1=(Local #1)+2
(Local #8)=(Local #7)+1l=(Local #1)+3

Local displacements 3, 4 are shifted one LX string to the right
hence they are 2¥(N+1l) ahead of 1, 2:

(Local #3)=(Local #1)+2%*(N+1)
(Local #U)=(Local #1)+2%(N+1l)+1=(Local #2)+2¥(N+1)

and finally:

(Local #5)=(Local #1)+2¥%(N+1l)+2=(Local #T7)+2*(N+1)
(Local #6)=(Local #1)+2%¥(N+1)+3=(Local #8)+2¥(N+1)

With the algorithms derived above, it is quite easy to
develop an efficient procedure to input the entire assembly list
into the /DATA/ vector. The reader will recall that the pointer
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for element number LNUM is stored in INTGR(IMASTR+LNUM-1).
One additional integer variable, called NEXT, is required. NEXT
is to be incremented after completion of the input for one ele-
ment, so that the next value of NEXT is the address of the next
avallable location in the master assembly list, i.e,, NEXT=
the value oi the pointer for the next element. The entire assembly
list is then generated and input by the following set of F@RTRAN
instructions:

SValues of M and N defined elsewhere in program)

C INITIALIZE P@INTER VALUE
NEXT=IMASTR+NET
¢ L@@P @VER ELEMENT STRINGS
DZ 20 LX=1, M
DY 20 LY=1, N
LNUM=LY+N¥(LX-1)
IPTR=IMASTR+LNUM-1
C ESTABLISH P@INTER F@R THE ELFEMENT
INTGR(IPTR)=NEXT
C CALCULATE JD1=1 LESS THAN MASTER N@. @F 1ST DgF, JD3=1
C LESS THAN MASTER Ng. @F 3RD D@F
JD1=2¥%(LY~1)+2¥(N+1)¥(LX~-1)
JD3=JD1+2%(N+1)
ASSIGN DOF MASTER NOS. TO LOCATIONS NEXT, NEXT + 1,..., NEXT + 7
IN /DATA/ VECT@R
J=0
K=0
Dg 10 I=1,8
INDEX=NEXT+I-1
IF(I .GT, 2 LAND. I LT, 7) GZ T¢ 5
J=J+1
JD=JD1
11=J
Gg Tg 10

(PN @]

K=K+2
1I=K
10 INTGR(INDEX)=JD+II
¢ IJNCREMENT NEXT L@CATI@N
20 HNEXT=NEXT+8
C ST@RE A ZERZ IN NEXT L@CATI@N (ASSUMING EXCESS ST@RAGE
C 1IN MASTER ARRAY)
IF (NEXT .LE. LMASTR) INTGR{NEXT)=0
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The last IF statement above is a good form of insurance for cases
in which the user may have overestimated the number of words
required for his master assembly list,

A similar scheme for structures consisting of triangle
elements (Figure 1U4) can be developed if the "right-side-up"
and "upside-down" elements are treated as separate sets.

The automatic generation technique derived above was de-
veloped for a structure with complete topological regularity;
however, it may be extended to cover large portions of less regular
structures with relatively little additional programming. There
is also a hidden advantage: the numbering strategy adopted in
Figure 15 is not only easy to produce, but also minimizes the
population of the master stiffness matrix if none of the elements
have mid-side nodes.

5.3 A Short Note on Automatic Data Generatiag

The reader will recall that the hypothetical user in
Section U4 chose to read in his element coordinates and basic
properties from data cards., This procedure can be time-consuming
and expensive for problems involving large numbers of elements,
especially when the element set geometry is not regular in the
sense of Subsection 5.1 and Figure 13. However, it often happens
that the element set geometry is regular in the sense that the
element coordinates may be calculated from a general algorithm
based upon the element string concept discussed in the previous
subsection, i.e.:

D@ 20 LX=1, M
D@ 20 LY=1, N
LUM=LY+N¥ (LX~1)
(X=F(LX, LY))

where f={Xl, Y1, X2, Y2,...} is the element coordinate vector
and T is a floating point function of LX and LY. An algorithm
of this type may be used to generate the data base, as it is
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needed, for calculation of element stiffness matrices and element
stresses., This results in the trade-off of a slight increase

in execution time and some decrease in required storage space,
since it is not necessary to carry large vectors of global nodal
coordinates in core,

5.4 A Handy Trick

There often occur plane elasticity problems in which a
large number of degrees of freedom are to have prescribed displace-
ments, For example, suppose a rectangular domain such as the
one shown in Figure 15 is to be analyzed, and *that all four edges
of the domain are clamped. This means that 25 to 30 per cent
to the total degrees of freedom will have prescribed displacements.

A significant amount of execution time may be saved by
modifying the numbering scheme shown in Figure 15, so that the edge
degrees of freedom have the largest global numbers., Let NDT
be the total number of degrees and NFT be the total number of
unconstrained degrees. Then the modified number scheme assigns:

1, 2,..., NFT
to the unconstrained degrees and:

NFT+1, NFT+2,..., NDT
to the degrees along the edges of the structure. Program stages
1 through 5 are completed in standard fashion,

However, just before factoring !( , Fhe user may fool
FEABL by inserting:

ITEMP=NDT
NDT=NFT

in his MAIN subprogram. Subroutines FACTPD/FACTSD and SIMULQ
will then solve only for the unknown displacements 1, 2,..., NFT.
At the beginning of Stage 7, when the full displacement vector
may be required again, the user inserts:

NDT=ITEMP
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The real value of this trick depends on a trade-off between
execution time and core storage. The modified numbering scheme
will result in a requirement for additional storage space for 5( ’
over what is needed by the numbering scheme discussed in Subsection 5.2.
The excess requirement is given by:

ASx(NDT-NFT) (NDT-B)

where B is the average semi-bandwidth of the unconstrained part

of K .

5.5 Time-Saving Techniques for Design Studies

The "design study" approach to finite element analysis

may take any of the following forms:

1, Consideration of a number of loading environments
applied to a unique structure with unique displacement
boundary conditions.

2. Analysis of a unique structure under various environments
in which prescribed displacements are changed, as
well as prescribed forces.

3. Consideration of variations in the structure itself
to meet a given environment,

The first two categories are self-explanatory. An example of
the third might be an analysis of a truss structure in which
the compression bars are checked for buckling:

har < o= TEL/
If any bar were found to be under a compressive load greater
than its Pcr’
redesigning the bar and re-analyzing the new structure.
The above categories of problems can be studied using

FEABL with only minor modifications. No changes are required
in the data location interfaces and if a change to the process
sequence interface is required, it involves only an intelligent

the program might incorporate an algorithm for
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application of the rules presented above. lHowever, the analyst
must be familiar with programming techniques required for com-
munication between his computer's core and external storage devices
(system disks, drums, tape units). These techniques vary from
installation to installation and will not be discussed in specific
terms here, The analyst should consult the operating manuals
applicable to the system which he will be using.

Load environment case study 1s the easlest type of multi-
solution problem to handle. Since the displacement boundary
conditions are not varied, only one assembly and factoring of
the master stiffness matrix need be done. The factored form
of K 1is held in the /DATA/ vector while each prescribed vector
is formed and the displacements are solved for, The quantity:

+*+ A A
Q = Qg = KFD Uy
A

Gk= Assembled Element Equivalent Nodal Forces

A
and the prescribed displacements lll)numt be saved. These two
quantities are found in the Force/Displacement Vector:

_let
““{a,,}

in the /DATA/ vector just after BC@N is calied. (The prescribed
external loads Q F» oD the other hand, are not really needed
until SIMULQ is called.) Figure 16 1llustrates the modified
FEABL process sequence whi:h will accomplish this result,

The second category involves essentially the same techniques
as the first. However, in this case the data which must be saved
in external §porage are:

1. Q E - Assembled element equivalent nodal forces.

2. |( - Assembled master stiffness matrix prior to

boundary condition application,
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FEABL + User Accumylate S
. IMULR
MAIN & Stiffaes Qﬁ Concentrdte
Gencrators thru A"' & > azoads XTRACT
FACT PD/FACTSV ? 9. Stresses

Loop Over All Cases

FIGURE 16

For each case thg\ user must input the contents ofAthe constraint
vector, fetch q g» accumulate QF and reset llD, fetch K
and finally re-enter the standard FEABL process at the point
where BC@N is called.

Significant time savings are gained in the third problem
category if the design changes involve only a few elements in
a structure composed of a large number of elements. Suppose
that the displacement solution has been found from the {rrce-
displacement relations for the initial structure:

Ku= Q.+ 0*

During calculation of the element stresses, it is discovered
that design changes are required in one or more elements; these
changes will appear in the force-~displacement relations as a
modification AKA of the master stiffness matrix and (possibly)
a modification A Q E of the assembled element nodal force vector.

55

1]
|




The new force-~displacement relations:

(K+aK) ' = Q.+ Q* + 40

must then be solved for the modified displacements uw .

To program the design change technique with FEABL, the
user must take the Iollowmg nonstandard actions:

1. output K and QF+Q to external storage after
assembly and input of prescribed quantities, but before
calling BC@N,

2., After the initial displacement solution ¥ has been
obtained, transfer it to temporary core storage out-
side the /DATA/ vector. (The Force/Displacement Vector
area in the /D’{xTA/ vector will be required for accu-
mulation of AQE.) Zero the Force/Displacement Vector
and the Master Stiffness Matrix Array.

3. Calculate stresses from ¥ , element-by-element. (The
user will need his own version of XTRACT to extract
the proper u from temporary core storage.) Wher}\

a design change is required, calculate Ak and AQel
and accumulate them using FEABL subroutine ASEMEL.

by, Ap/Ply rotation transforma;cions (if any) to A¥ and
AQE, reset entries of AQE to zero where displacements
are prescribed,

5. Fetch K and é +Q from external storage and accumu-
late them to AK and Aa Apply boundary conditions
and solve for #’ .

The above process may be repeated in an iterative design
process, with K +AK QF+ Q +AQ* at the beginning of each
new design step playing the role of the initial values K ,Q +Q
This procedure is referred to as iterative updating, and is also
applicable to nonlinear elastic and elastic-plastic analysis
of continua. In these types of analysis the "design change"
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results from following a material stress-strain curve and/or i
testing the satisfaction of a yield conditon (e.g., the lMises- ;
Hencky criterion).

5.6 Substructuring with FEABL

The FEABL software system has been designed primarily f
for in-core solutions. Up to 1,500 degrees of freedocm can be
handled on currently available hardware with 500 KBYTE (125 KWord)
memory. FEABL's in-core capability may be extended by means ‘
of the substructuring technique outlined briefly here.
Figure 17 illustrates a domain which has been divided
|
|
|
\
\
|
\
|
|
|
\
|
|
|
|
|
|
|

into a small number of substructures. The desired stress solution
accuracy is on a scale much cmaller than the substructure dimension,

3
3
:
E
¥
E
z
T
;
|
-:'_

£ A

Substruct | Sukstruct
*y

408 M SR M

w2
3-/_\“

Substruct | Substruct

:

£

3 *4
?-‘d . E

esired 3 ,‘

accsuric Substructure divided j

V into ordinary elements ij

FIGURE 17 ;

PRy,

so each substructure is subdivided further into ordinary elements.

Parn

Let the subscripts I and B refer, respectively, to the interior

o

and boundary degrees of freedom in a substructure. Then the
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force-displacement relations for the substructure may be partitioned
into:
T

The interior degrees of freedom may be eliminated by the process
of static condensation, which transforms the substructure force-
displacement relations to the form:

K:s Ug = (Kse" Ku K?: Ka:) Us = @y~ KarK;: Q; = Q,c

Each substructure may now be considered as a "superelement"
having degrees of freedom only on the interelement boundaries,
¢ ¢
as shown in Figure 18. The quantities KBB and QB are then

FIGURE 18

assembled in the same manner as the stiffness matrices and equiva-
lent nodal force vectors for ordinary elements. After the displace-
ment solution on the substructure boundaries has been obtained,

the original force-displacement relations for each substructure

may be used, with Z‘B as prescribed displacements, to obtain

the interior solution.
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In addition to extension of FEABL's problem size capability,
the substructuring technique may also be used to reduce roundoff
error and to save execution time. All of these improvements
depend upon optimization of the relative numbers of substructures
and of ordinary elements within the substructures. Use of the
substructuring technique with FEABL software will be discussed
in detail in a future publication.

5.7 Error Estimation Methods

Rigorous mathematical proofs exist showing that a finite
element analysis for the stress and displacement distributions
ir a structure converges to the exact solution as the number of
elements in a given domaln is increased, provided only that certain
easily satisfied restrictions are obeyed (Ref.3). However, since
all calculations done in a digital computer are imprecise, errors
due to roundoff will occur. It has been shown (Ref. U) that
roundoff error increases in an extremely complex way as the number
of elements 1s lncreased. Therefore, it is advisable to resort
to some numerical method which will produce a reasonable estimate
of the error, and which does not depend upon the deta'ls of what
types of elements are used or what boundary conditions are applied
to the structure., Four methods are presented here,

5.7.1 Irons' Energy Variance Criterion

The energy criterion proposed by Irons (Ref. 5) is the
most economical, requiring no more time than the calculation
of the rounding error parameter discussed in Subsection 3.2.6.
The diagonal entries Kii of the master stiffness matrix must
be saved, either in temporary core storage or on an external
unit, After the displacement solution has been obtained, the

energy variance can be calculated from:
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where p is the computer precision in decimal places and B is
the average semi-bandwidth of K . The value of B can be obtained
easily from the address index parameters¥:
B=FLPAT(LK+1-IK)/FLZAT(NDT)
One half the value of the denominator of the energy variance
expression is provided to the user by FEABL subroutine SIMULQ
in the argument ENERGY of that subroutine,.
Some care must be exercised in applying Irons' energy
criterion. 'The user will obtain unrealistically largeggplues
of € in problems in which the structure is constrained very
lightly, and in which large amounts of "self-energy" can be stored
when a single degree of freedom is displaced. The cantilever
beam is a good example of a structure to which the Irons' criterion
cannot be applied.

5.7.2 The Residual Force Method

Calculation of residual forces provides a more detailed
plcture of the distritution of errors through the structure,
The master stiffness matrix may be saved in external storage for
this purpose immediately after calling BC@N. Approximate values
of the reaction forces at degrées where displacements were pre-
scribed may be obtained as well by saving K just prior to calling
BC@N,

¥
FLGAT 1s an IBM library function whici. converts integers to
floating point numbers.
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Let lf}.be the approximate displacement solution dbtained
from the constrained force-displacement relations:

[KFF 0]{%} - {&F .AKFD&J-}
0 1I)luy Uy

* Q: _ u;

? {Q,,*} ‘K{z’in}

is the approximate force vector. When I( has been returned

Then:

to core after the displacement solution has been obtained, Q*
can be calculated by the following algorithm:

DIMENSI@N R(500)

VECT@R R MUST ALL@W ENQ@UGH ST@RAGE F@R THE FULL
F@RCE VECTZR Q-STAR IF REACTI@N FPRCES ARE
DESIRED. @THERWISE, EN@GUGH F@R THE UNC@NSTRAINED
DEGREES ¢F FREEDgM MUST BE ALL@WED

ALLOCATE EXT..RNAL FILES

L)

oNoReNeRe]

(Standard FEABL process sequence, except where noted)

oo e

C X MATRIX T@ EXTERNAL ST@RAGE
WRITE (...) (REAL(I), I=IK,LK)
C F@RCE/DISPL MUST ALS@ BE SAVED F@R C@MPARISZN LATER
WRITE (...) (REAL(I), I=IQ, LQ)
CALL BC@N
CALL FACTPD
CALL SIMULQ(STRE)

Stress solution, if desired)

eer~se

C RETURN K MATRIX F@R CALGCULATI@N @F Q-STAR
READ (...) (REAL(I), I=IK, oK)
C INITIALIZE C@NSTRAINED R@W PPINTER AT 1ST N@NZERZ RpW
D 50 II=ICPN, LCON
IF(INTGR(II) .EQ. 0) G@ T@ 50
NC=II
GZ 7@ 60
50 CONTINUE
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73
T4
70

81

500
80

%NITIALIZE R VECT@R PPINTER

0 NR=1

L@PP @VER DEGREES #F FREED@M, SKIPPING C@NSTRAINED DEGREES
D@ 70 IR@W=1, NDT

IF(INTGR(NC) .NE. IR@W) G@ T¢ 71

UPDATE R@W P@INTER

NC=NC+1

Gg T@ 70

F@RM SUMMATI@N @F K(IR@W, J)¥* U(J), J=LNZ T@ NDT
INIT=ILNZ+IRGW-1

INIT=INTGR(INIT)

KK=IK@UNT+IRGW-1

KK=INTGR (KK)

SUM=0,

D@ 72 J=INIT, IRGW

KADR=KK+J

JI=IQ+J=-1

SUM=SUM+REAL(KADR) ¥ REAL(JJ)

REMAINDER @F SUM MUST TAKE K ENTRIES FR@M C@L IRg@W
INIT=IROW+1

IF(INIT .GT. NDT) G@ T@ 74

D@ 73 J=INIT, NDT

MAKE SURE R@W J HAS AN ENTRY IN C@L IR@W
JI=ILNZ+J-1

IF(INTGR(JJ) .GT..IR@W) G@ T8 73

KADR=IK@UNT+J-1

KADR=INTGR({KADR)+IR@W

JI=IQ+J~1

SUM=SUM+REAL( KADR) ¥*REAL(JJ)

CONTINUE

PLACE SUM IN NEXT AVAIL R L@CATI@N AND UPDATE R P@INTER
R(NR) =SUM

NR=NR+1

CPNTINUE

RETURN @RIGINAL Q T@ C@RE F@R C@MPARISEN

READ (...) (REAL(I), I=IQ, LQ)

CALCULATE RESIDUAL F@RCES Q-(Q-STAR)=Q-R
REINITIALIZE NC AND NR

NC=II

NR=1

D@ 80 IRgW=1, NDT

IF(INTGR(NC) .NE. IRGW) G@ T@ 81

NC=NC+1

Gg T® 80

JJ=IQ+IRGW-1

R(NR) =REAL(JJ)-R(NR)

WRITE (KW, 500) IR@VW, R(NR)

FGRMAT (20H RESIDUAL F@RCE Wg.,I6, 1X, 1H=, E10.3)
NR=NR+1

CONTINUE
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In the above algorithm, the vector of residual forces£

R, = @ -Q = 4@

has been caiculated. The entries of R‘F provide the detailed pic-
ture mentioned at the beginning of this subsection. Another
useful parameter for overall error measurement is the force vector

{ (R) ]%: | 4Q,|
Z’(@,‘"'ZIKHuJ)Z D Qe

magnitude ratio:

where the summations extend only over the unconstrained degrees
of freedom,

5.7.3 Re=Solution for Residual Displacements

Although the residual force vector is fairly easy to cal-
culate, the interpretation of its meaning is not a trivial task.
The displacement solution must certainly be Judged acceptable
if, for example, there are many residual forces on the order
of 1 1b. at degrees where fcrces of 1,000 lb, were applied originally.
However, a common situation in finite element analysis 1s that
the applied force is zero at many degrees of freedom. What does
a l 1b, residual force mean at these points? The averaged mea-
sure ‘fF presented in the previous section relieves this detailéd
interpretation problem to some degree. However, the averaged
measure of greatest interest to the analyst is the displacement
vector magnitude ratio:

[augl
| g |

dy =
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Unfortunately, no simple relation exists between dF and the force
vector magnitude ratio Y‘F. Ir K is an 1ll-conditioned matrix,
dF may in fact be much larger than T'F.

If the analyst is willing to spend some additional computing
time, the displacement residuals and an approximate calculation
of dF may be obtalned by re-solution. This technique requires
an additional external storage file capable of holding K . Just
before Kk 1is returned to core in the algorithm of Subsection 5.7.2,
its factored form LDLT is read into this extra file. Then,
picking up where the previous algorithm ended, the original dis-
placement vector magnitude is calculated, LDLT is returned
to core and the contents of R are transferred to the proper
locations in the force/displacement block of the /DATA/ vector.
Re-~solution is now done simply by calling SIMULQ again, after
which AllF will be found in the force/displacement block. The
displacement vector magnitude ratio obtained from this procedure
is actually:

| augl
* F
dp = Lk

—

and dp*#dp unless IAuF|<<| Up*|.
5.7.4 The Method of Rigid Body Modes

A somewhat less cumbersome technique for error measurement
can be employed when a structure is modeled by elements which
contain a full set of rigid body modes in their assumed displace-

ment fields. Let
T;
Tr = gAFZ
T,

be any rigid body displacement vector for the whole structure
(e.g., unit vertical transletion at every node), Then if o

is introduced into the unconstrained force-displacement relations
and the right hand side 1is calculated, there will result:

&l
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to the accuracy of the user's computer. Conversely, solution
of the constrained force-displacement relations:

Kq O quz 'Kbe,,
o 151 &

would result in llF= PF to the accuracy of the computer if
there were no rouqSoff error. Now, since the exact Z‘F can
be inferred from fb merely by inspection, the above problem

may be solved as an auxiliary to the real problem, and the error
measure:
d - 'tF "‘uf-‘l
RB 1T,

may be calculated. The rigid body mode technique requires the
saving only of K (before constraint). A simple algorithm will
serve to calculate TF and I‘F- U ,, and the additional execution
time required amounts only to calling each of BC@N, FACT?D (or
FACTSD) and SIMULQ once extra. Also, the lengthy residual force
and re-solution algorithm in the MAIN program is avoided.

Recent tests of the method of rigid body modes on a cantilever
beam have shown that when dF<0.l, dRB<<dF' However, when dF>O.1
(the region of primary interest) dRB performs as well as dg.
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APPENDIX A

C@MM@ZN AREAS DATA REQUIREMENTS

The following table summarizes what information 1s expected
by each FEABL subroutine in the four control parameter C@MM@N
areas and in the /DATA/ vector C@MM@N arez.

A
SUBROUTINE g
NAME O
<
COMMEN N
AREA 2 2 2] & | 31|68
= EA < oo fom) <€
(%] | | o % £ = = ot
(%) O [2d 1 o) 3] - 59!
< m ¥ ) b 0 %) =
/10/ (Printer
Code KW Only) Y d g Y / / Y
/SIZE/ NET, NDT S v / / / J/
/BEGIN/ Address / sy / /' sy
index parameters
. Y
/END/ Address J/ / Except /
index parameters LK
/DATA/ Vector:
1, Constraint Vector y 1Y (e¢) v
2. Address Count Vectony ¢ Y Y v i
3. LNZ Vector Y 1Y Y Y
4, Assembly List v Y v
]
5. F/D Vector (a) Y %&%9 Y 74
6. K Matrix (a) y 17 Y DL
(a) These blocks are zeroed by @SRK before the first element is
asggmbled.
(b) QE = Vector of assembled element equivalent nodal forces.

(¢) Block zeroed by SETUP
67
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APPENDIX B
APPLYING SHOEHORN AND STOPWATCH

Thlis appendix contains data from which the user may estimate
the total amount of core storage required by a FEABL-based pro-
gram and the approximate execution time (CPU time) the run will
take., Such estimates will prove useful aids in making trade-~off
declisions., The data given in this appendix is based on runs done
on an IBM 370/155 using the F@RTPAN G compiller. The numbers will
vary somewhat from one machine or compiler to another.

B.1 Estimation of Core Storage Requirement

The following table gives the length of each FEABL subroutine
in BYTES (as compiled in F@RTRAN G) and words, and the deck size.
On IBM 360 and 370 series hardware, core storage calculations
are normally done in terms of BYTES, while words are used on many

No. of Cards
Subroutine Name Words BYTES in Deck*
ASEMBL 410 1,642 58
BC@N 599 2,396 125
FACTPD/FACTSD 669 2,67H 126
PRK 517 2,070 106
ROTATE 1,858 7,430 316
SETUP 726 2,904 94
SIMULQ 600 2,398 127
XTRACT 130 522 23
"EABL Software-Total| 5,509 22,036 975

other hardware systems, The total storage requirement for
programs plus data can be estimated as follows:

*
Includes all comment cards
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Item: KWords KBYTES
1. FEABL Software 5.5 22.1
2. User programs (a) 2.5 10.0
3. System library subprograms (b) 5.1 22.0
4, /DATA/ Vector (c) (L) (4L)
5. Four control parameter /C@MM@N/ areas - 0.1

Totals 13.1+(L) l53.2+(ML)

(a) Estimate for a typical analysis with a MAIN program
and two generator subroutines,

(b) Includes library functions such as SIN, C@S, SQRT and
systems management subroutines.

(¢c) L=the dimension of the /DATA/ vector in KWords (1000
words).

B.2 Estimation of CPU Time Requirement

The process of factoring the master stiffness matrix into
its triple product:

K=LDL

is the primary time consumer in any finite element analysis. Some
study of the algorithms in FEALL subroutine FACTPD/FACTSD will
convince the reader that the CPU time consumed is proportional
to NBZ, where N is the total number of unconstrained DOF in the
assembled structure and B is the average semi-bandwidth of the
master stiffness matrix. B may be calculated appreximately from
N and the population density of K

B = (N+1)P .

2

where

_ _ Total No. of Stored Entries

P=Population Density = Total Entries in Full Lower Triangle
Experience on the IBM 370/155 indicates that the required CPU
time is given approximately by:

time £ NB2x10~0 minutes
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APPENDIX C

F@RTRAN IV LISTING OF FEABL SOFTWARE

The eight subroutines of the FEABL software system are
listed in alphabetical order in this appendix:

Subroutine Page
ASEMBL 71
BC@N 73
FACTPD/FACTSD 17
@RK 81
ROTATE 84
SETUP 93
SIMULQ 96
| XTRACT 100

The code is for FEABL Version 1 Release 1, with a 10,000~-word
/DATA/ vector, The follcwing actions will convert the program
to Version 2 ("On-Line") as explained in Section 2.3.

K -
b
; :
&3
;-
N
3
q
R
2
i
3
H
>
A
kS
E
kS
b
b
by
#
2
g
X
=
"
%
J
7
o
g
E
P
&
]
¥
)
£
<
a
o
Py
2
b
«
<
&
:
]
%
%
K
K
i
b

Change DIMENSI@Ns Delete

SUBROUTINE of REAL, INTGR to 2 Declaration

ASEMBL Card No. 0007 Card Hos. 0017 and 0020 ;

BCON 0007 0012 and 0015 :

FACTPD/FACTSD 0008 0013 and 0016 ;

@RK 0015 0020 and 0023 ;

RPTATE 0007 0013 and 0017 !

SETUP 0007 0013 and 0015 i

SIMULQ 0007 0012 and 0015 :

XTRACT 0007 0011 and 0013 i
{
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